

The book was found

History Of Strength Of Materials (Dover Civil And Mechanical Engineering)

Synopsis

Strength of materials is that branch of engineering concerned with the deformation and disruption of solids when forces other than changes in position or equilibrium are acting upon them. The development of our understanding of the strength of materials has enabled engineers to establish the forces which can safely be imposed on structure or components, or to choose materials appropriate to the necessary dimensions of structures and components which have to withstand given loads without suffering effects deleterious to their proper functioning. This excellent historical survey of the strength of materials with many references to the theories of elasticity and structures is based on an extensive series of lectures delivered by the author at Stanford University, Palo Alto, California. Timoshenko explores the early roots of the discipline from the great monuments and pyramids of ancient Egypt through the temples, roads, and fortifications of ancient Greece and Rome. The author fixes the formal beginning of the modern science of the strength of materials with the publications of Galileo's book, "Two Sciences," and traces the rise and development as well as industrial and commercial applications of the fledgling science from the seventeenth century through the twentieth century. Timoshenko fleshes out the bare bones of mathematical theory with lucid demonstrations of important equations and brief biographies of highly influential mathematicians, including: Euler, Lagrange, Navier, Thomas Young, Saint-Venant, Franz Neumann, Maxwell, Kelvin, Rayleigh, Klein, Prandtl, and many others. These theories, equations, and biographies are further enhanced by clear discussions of the development of engineering and engineering education in Italy, France, Germany, England, and elsewhere. 245 figures.

Book Information

Series: Dover Civil and Mechanical Engineering

Paperback: 480 pages

Publisher: Dover Publications (February 1, 1983)

Language: English

ISBN-10: 0486611876

ISBN-13: 978-0486611877

Product Dimensions: 1 x 5.5 x 8.8 inches

Shipping Weight: 1 pounds (View shipping rates and policies)

Average Customer Review: 4.5 out of 5 stars 19 customer reviews

Best Sellers Rank: #723,859 in Books (See Top 100 in Books) #80 in Books > Engineering & Transportation > Engineering > Materials & Material Science > Strength of Materials #109

Customer Reviews

The father of modern engineering mechanics, Stephen Timoshenko (1868–1972) taught for decades at Stanford University. His seminal engineering texts remain in wide use.

EXCELLENT..

This is a really fantastic book. I am a third into it and I am already in love. Provided you have already taken a course in strength/mechanics of materials, elasticity theory, this book gives a good perspective of the subject. It is fun taking the wrong assumptions earlier scientists took and working out what the implications of those assumptions would be and comparing that to what we now know. The one feature which can be irritating is how Timoshenko quotes French or German statements and does not bother to give an English translation. Oh, figures are also poorly labelled, difficult to match with the text. Even then, the book is awesome!

Well written History of solid mechanics by the most influential teacher/researcher/engineer of the twentieth century. Written with unmistakable clarity and compassion for the subject.

If you are not interested in civil engineering than you would probably be disappointed with this great math history book. It covers all the great mechanical master-builders and mathematical thinkers over the last five hundred years. It spans the whole length of their contributions to the field of engineering concerning the strength, deformations, and disruptions of solid materials pertaining to architectural structures and industrial features. This book is invaluable to anyone interested in the basis of today's theoretical equations, accomplishments of the respected mathematicians and their accepted applied scientific practices.

I am researching for a book about the building of the major bridges across the East River in New York. This book gave me insight into the work that went on before the designers of those bridges began their work. Timoshenko is the god of structural engineers. I never realized how erudite his non-technical writing was.

A book that can't be missed

Excellent review for those who like the history of today's principles in strength of materials. Includes biographies of Euler, Lagrange, Navier, Saint-Venant and many other influencial scientists.

This is a must-read for any solid mechanician. Timoshenko gives a fascinating overview of the history of strength of materials and related fields with great prose and occasional technical discussion. The price is perfect--get this on your shelf.

[Download to continue reading...](#)

History of Strength of Materials (Dover Civil and Mechanical Engineering) Advanced Strength of Materials (Dover Civil and Mechanical Engineering) Elasticity: Tensor, Dyadic, and Engineering Approaches (Dover Civil and Mechanical Engineering) Flow-Induced Vibrations: An Engineering Guide (Dover Civil and Mechanical Engineering) Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering) Code Check Plumbing & Mechanical 4th Edition: An Illustrated Guide to the Plumbing and Mechanical Codes (Code Check Plumbing & Mechanical: An Illustrated Guide) Civil War: American Civil War in 50 Events: From the Very Beginning to the Fall of the Confederate States (War Books, Civil War History, Civil War Books) (History in 50 Events Series Book 13) Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review (Dover Civil and Mechanical Engineering) The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (Dover Civil and Mechanical Engineering) Groundwater and Seepage (Dover Civil and Mechanical Engineering) Dynamics of Fluids in Porous Media (Dover Civil and Mechanical Engineering) Analytical Fracture Mechanics (Dover Civil and Mechanical Engineering) Non-Linear Elastic Deformations (Dover Civil and Mechanical Engineering) Geometric Dimensioning and Tolerancing for Mechanical Design 2/E (Mechanical Engineering) Practice Problems for the Mechanical Engineering PE Exam, 13th Ed (Comprehensive Practice for the Mechanical Pe Exam) The Mechanical Design Process (Mcgraw-Hill Series in Mechanical Engineering) The Mechanical Design Process (Mechanical Engineering) Engineering Materials 3: Materials Failure Analysis: Case Studies and Design Implications (International Series on Materials Science and Technology) (v. 3) Freezing Colloids: Observations, Principles, Control, and Use: Applications in Materials Science, Life Science, Earth Science, Food Science, and Engineering (Engineering Materials and Processes) Biomimetic Materials And Design: Biointerfacial Strategies, Tissue Engineering And Targeted Drug Delivery (Manufacturing Engineering & Materials Processing)

[Contact Us](#)

[DMCA](#)

[Privacy](#)

[FAQ & Help](#)